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We investigate the uniqueness of the determination of the temperature dependence 
of the thermal conductivity and the volumetric heat capacity from known tempera- 
tures and heat fluxes on the boundaries. 

In modeling high-intensity nonstationary thermal processes it is necessary to take ac- 
count of the temperature dependence of the thermophysical properties of the material. How- 
ever, this dependence cannot always be determined by classical methods, Thus, it is import- 
ant to be able to determine these properties from directly measurable quantities by solving 
a certain inverse problem. Investigation of the uniqueness of the solution of such inverse 
problems involves the development of experimental arrangements which allow the determination 
of the temperature dependence of the thermophysical properties of the materials in high in- 
tensity nonstationary processes. 

The problem of the uniqueness of the determination of the temperature dependence of the 
thermophysical properties when measurements are performed at certain points of a body has 
been treated in [1-7]. In those papers monotonic processes were considered, i.e., processes 
in which the heat flux does not change sign at the points of measurement or, what is more, 
the temperature is a monotonic function of time. However, the results obtained in [2-4] are 
easily carried over to piecewise monotonic processes, which are important in applications. 
We show this by the example of a problem treated in [2]. 

We use  the  n o t a t i o n  Q~-----{~, t ) : O < x < l ,  O < t ~ T } ,  Q==-QT, Q,-----{(x, t ) ~ : O ~ x ~ l ,  O ~ - ~ t ~ }  
and c o n s i d e r  t he  p rob lem of  d e t e r m i n i n g  t he  t r i p l e  o f  f u n c t i o n s  { k ( u ) ,  c ( u ) ,  u ( x ,  t ) }  which  
s a t i s f y  t he  e q u a t i o n  

c(u)ut=(k(u)~)~, (x, 0 6 0  (1) 

and the conditions 

u (x, O) = u0 ------ const, u~ (0, t) = O, k (u) u~ !X=l = ]~ (t), ~ ( 0 )  = O, 

u(O, t )=f l ( t ) ,  u(l ,  t)=f2(t),  f~( t )>O,  O < t < ~ l ,  ~ h < t < T ,  

f ~ ( t ) < 0 ,  % < t < % ,  f l ( 0 ) = s  f~ (0) = t~(0) = o 

f o r  known ~(t), [,(t), [2(t) EC i[O, T], u 0. 

D e f i n i t i o n :  We c a l l  the  t r i p l e  o f  f u n c t i o n s  { k ( u ) ,  c ( u ) ,  u ( x ,  t ) }  a s o l u t i o n  o f  p rob lem 
(i), (2) if 

1) u (x, t) E C 2' 1 (07); 

2) k ( u ) > O ,  c ( u ) > O ,  k(u) CC~[R1, R2], where Rl=mina(x ,  t); R2::maxu(x,  t); c(u) satisfies 

the Lipshits conditions; Q 

3) {k(u), c(u), u(x, t)} satisfy relations (i) and (2). 

Assuming that a solution of problem (i), (2) exists, we prove it is unique for k(u) and 
c(u) belonging to the class of piecewise-analytic functions. 

.Lemma.' For a solution of problem (I), (2) to exist it is necessary that [~(t)>~O and 
~(t)>~O for rE[0, ~]i] , where [~ (t)>O and ~(t)>O on the set everywhere dense in [0,~i] 

Proof: We introduce the functions 
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Then, integrating the identity 

by parts, we obtain the relation 

l=xl~ 
Ix=odt, 

Q,q~ 0 0 
(3) 

which is valid for sufficiently smooth functions ~(x , t )  . 
we find that (3) is valid also for all ~(~ OECe.~(Qn,).. 
tion of the boundary-value problem 

Passing to the limit (cf. e.g. [2]) 
In (3) we take as ~(~ t) the solu- 

c (u) qD, + k (u) ~ =  = 0 in Q~, ~ (x, ~:) = O, 0 < x ~< 1, 

:p(O, t ) =  O, ~ ( 1 ,  t ) =  x(t), z(t)EH~+~'[O, n:], 

Z ('1]1) = Z t ('111) = O, Z (t) ~ O, Z (~) 6 O, 0 ~ t < nl, 

(4) 

(5) 

whose existence follows from [8] and the inequality ~(I, t)~0, ~(I, t)~0, 0~t~1. 
since fs for rE(0, ,~) , we obtain from (3) the inequality 

Then, 

02 (t) X (t) dt = :[ r (f, (t)) f; (t) (~ (1, t) dt > O. 
0 0 

Since x(t) is the derivative of a continuously differentiable function, and ~(t) is a continu- 
ous, ~(t)>~0 , and moreover there is no interval (=, ~)G[0 ~f]_ such that ~(_t)~0 for #@ 
(a, ~). This means that any interval (~, B) contains a point t such that ~(t) > 0, and by 
virtue of continuity, ~(t) > 0 also in a certain neighborhood of t. Thus, the set of zeros 
of the function ~(t) is nowhere dense in [0, ~x], and consequently ~(t) > 0 on a set every- 
where dense in [0, nl]. 

We now replace boundary conditions (5) by the conditions 

~(0, t)=z(t), q~(1, t)=O, z(t)EH~+,~[O, ,i]1], (6) 

and take for ~(x, t) in (3) the solution of the problem (4), (6). The existence of a solu- 
tion of this problem follows from [8] together with the inequality ~(l,t)>~0.~(l, t)~0) �9 Then 
we obtain the inequality 

( c (h (t)) I~ (i) z (t) dt = ~ c (f2 (0) ~ (0 ~ (I, t)dt > O. 
0 o 

From which it follows that ] } ( t ) ~ O  for tE[O, Nil and [}(l)>0 on a set everywhere dense in 
[0; ~1]. 

Theorem. For k(u) and c(u) belonging to the class of piecewise analytic functions, the 
solution of problem (i), (2) is unique. 

Proof. Using the lemma, we find that the conditions of Theorem 4 of [2] are satisfied 
t6[0,~ (the fact that in the lemma rigorous inequalities are valid on a set which is every- 
where dense, while in Theorem 4 they hold over the whole interval, is not important) and thus 
the theorem was proved in [2] for t@[0, ~I] , and consequently for u6[u0,/2(~i)]. 
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Let us now consider the interval tC(N1, ~2), on which f2' (t) < 0. Two cases are possible: 
either [2(~]2)~Uo,, or [2(N2)<u0. In the first case the range of values of the function u(x, 
t) for NI~-~t~D2 belongs to the segment [uo, f2(n2)], for which it is already known that 
k(u), c(u), and u(x, t) are uniquely determined. If [2(N2)<u0, , there exists an n such that 
[.(~) = u0,. [~( t )>u0 f o r  tC(O, ~) and [ 2 ( t ) < u  o f o r  IE(~, ~o] We s h a l l  p rove  t h a t  t h e n  the  
minimum v a l u e  o f  the  f u n c t i o n  u ( x ,  t )  i n  t h e  range  x6[O, I], t6[-~, ~|,' ~ ,  o c c u r s  a t  the  p o i n t  
(I, z) where f,(~)>[~(~). According to Lemma i Of [i] ux(x, ~)~0 , and since [iil)~'O, 
fi(t)@0 for t~[0, N1], then u(x, N~)j-~u0. We extend Eq. (I) and its solution, which is an even 
function of x, to the segment [--i, i]. Applying the rigorous maximum principle to the prob- 
lem obtained (cf. Theorem 4 p. 57 and remark on p, 58 of [9]), we find that in the interval 
x~[--1, I] t6[N1, ~] a maximum value of u(x, t) smaller than fz(~a) cannot be reached for Ix]<l, 
and consequently it is reached for x = i. Since f=(t) is monotonic for ~[~, ~] , the mini- 
mum value of u(x, t) for ~[~, ~] is reached at the point (I, ~). 

We now prove that ux(l , t) < 0 for t6[~, N~].. Since u(x, t) has a minimum at the point 
(i, f~ (n=) , by theorem 14 on p. 69 of [9], ux(l, f=(n=)) < 0. The statement of thi_s the- 
orem is valid for Eq. (i) without assuming that this minimum is negative. Since r6 [N, N~) u(1, 
"O~u(x, ~), for ux(l , ~)~0. We take e > 0 such that u~(x, ~)<-0 for x~[l--~, I]. Then for 
x6[1--~, 1) 

1 

k (U) Ux 1( 1, ~) - -  k (U) Ux ](., ~) = ~ C (U (S, ~)) U, (S, ~) ds 
X 

and the assumption that ux(l , r) = 0 leads to the inequality ux(x , r) > 0 for xE[l--~, I). 
It follows from this inequality that u(x, ~)~u(l, ~1 , and this contradicts the inequal- 
ity u(x, ~)~u(1, ~) proved earlier. Thus, ux(l , T) > 0. 

Thus, we have proved that for ~E~, N~]Tux(l, T)>0 u(l, ~) rain u(x,t), and by hypothesis 

[2 ( t )<O f o r  t6[~, N2) and f '  . ( ~ . )  = O. C o n s e q u e n t l y  f o r [ ~  ~1~) t h e r e  e x i s t s a n e i g h b o r h o o d G  
of the boundary x = i in which u x < 0 and u t < 0. Since fa(t) < f,(t) for tell, N~], by re- 
peating the proof of Theorem 4[2] we can choose a T such that the set of points (x, t) for 
which Ac(u) # 0 and Ak(u) # 0 falls within the neighborhood G, and obtain the relation I~---0 
(cf. p. 400 [2]) for Ac(u) and Ak(u) having fixed signs. From now on the proof repeats that 
of Theorem 4 of [2}. For t6[Nl, ~s] the theorem is proved. For tE[N~, T] the proof is simi- 
lar. 

It is clear that the theorem remains valid when f2'(t) does not change sign twice, and 
the derivative a finite number of times. We note also that the theorem is valid when the ini- 
tial condition is not constant. In this case, however, it is necessary to require that the 
coefficients sought were known on a set of values giving the initial value of the function 
Uo(X). 

NOTATION 

u, temperature; c(u), volumetric heat capacity; k(u), thermal conductivity; x, coordi- 
nate; t, time; T, duration of process; ' , symbol for derivative of a function of a w 
variable; uo, initial temperature; f,(t) and f2(t), boundary values of temperature; T, q,, 
D2, n,t, certaintimes;o(t), heat flux at boundary; C*[0, T], set of functions continuously 
differentiable on the segment [0, T]; C~'=[Q], set of functions twice continuously differenti- 
able with respect to the first variable, and once continuously differentiable with respect to 
the second variable on the set Q; H*+a[0, n,]j Holder class (cf. p. 16 of [4]); ~p~(x, t), 
solution of subsidiary problem; max u(x, t), maximum and minimum of function u(x, t) on the 

set Q; a, B, e, certain numbers; Qc(u) and Ak(u), differences of two volumetric heat capa- 
cities and thermal conductivities respectively (cf. [l]);I T, acertain integral(cf, p.400[l]), 
Subscripts: x, t, symbols for derivative with respect to corresponding variable. 
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TWO-DIMENSIONAL CONVERSE PROBLEMS FOR QUASILINEAR THERMAL 

CONDUCTIVITY EQUATIONS 

V. M. Volkov UDC 517.946 

Converse problems on determination of unknown functions which depend on solution 
of the original problem and the spatial variable are studied. 

One-dimensional converse problems involving unknown functions dependent on the solution 
of the original problem were considered in [i]. In view of the fact that solutions of con- 
verse problems are sought within special classes of functions, we will first define those 
classes. 

Definition I. We will say that a function q(u, x) belongs to the class ~a[R~, Re], if 
q(u, x) EC a'2 ([RI, R~] X [0, oo))NC((--oo, ~) X [0, oo)) and the following conditions are satisfied: 
qx'(U, x)~ 0 for u~,0, and for any two functions of the given class their difference q(u, 
x) = q1(u, x) -- q2(u, x) satisfies the inequality 

II-qx(U' x)llu~c]l$(u' x) Hul [I O~+mq(u' hOu,n I ~,. k+m~2 , where c is a fixed constant. 

Definition 2. The function 6(u, x)6~[RI, R2], if o(u, ~)!6C3+k,2+ k ([RI, R~] x [0, oo)) 

NCk,h((--oo, oo)X [0, oo)) , and the conditions II Ok+m6(u' x) �9 Ox~Ou, n <~, k + m < 2 ,  O < v < ~ ( u ,  x ) < ~ ,  

a r e  v a l i d ,  and  f o r  a ny  two f u n c t i o n s  o f  t h e  g, i v e n  c l a s s  t h e i r  d i f f e r e n c e  a ( u ,  x) = ~ ( u ,  x)  --  
~ 2 ( u ,  x)  s a t i s f i e s  t h e  i n e q u a l i t y  H~'x(u, x)Hu~cl]~(u, x)]]u. 

We will now note some facts necessary for the future. 

Lemma I. Let ~(t) be a continuous function at 0 ~ t ~ T and 

t 

(t) ~ ~ (t) + c ~ (~) 1 + ~ / t ~  , then for any t*, O~I*~T, 

,max [ q~ (t) [ ~ . c l  max [ ~ (t)[, 
O<~t~t* O<~t~t* 

where the constant c: depends on c and T. 
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